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H is found that the calculated recoil momentum for sufficiently large target radii is negative irrespective of 

the variations in the equation of state, whereas the experimentally measured value is positive regardless of  

the target dimensions. An explanation for the difference revealed is proposed. 

The development of various methods of pulsed high-energy treatment of matter has led to the need for 

numerical solution of numerous problems on explosion in a homogeneous atmosphere with counterpressure. To 

date, considerable experience in solving these problems by various methods has been acquired [ 1-4 ]. Based on the 

approaches developed, one can calculate profiles of the pressure, density, mass velocity, and specific internal energy 

of the gas and other quantities, including the recoil momentum acting on a flat target, which is important in 

numerous applications. At the same time, a comparison of works [1-4 ] devoted to investigations of a point explosion 

with counterpressure revealed substantial disagreement in the calculated dependences of the specific momentum of 

the excess pressure on the distance to the explosion center, which are determined by the relationship 

t+At 
q_+(r)= f P ( r , t ) - P o ) d t ,  (I) 

t 

where P is the pressure in the shock wave, P0 is the counterpressure (the pressure of the environment), At is the 
duration of the excess-pressure phase with a certain sign at the point r ffi const, and the plus and minus signs refer 

to the compression and rarefaction regions, respectively. Thus, in [ 1 ] the function q(r) = q+ (r) + q_ (r), which is 

positive in the vicinity of the explosion center, first decreases with r, then becomes negative, and then increases 

again, still having a negative sign. In [3 ], q(r) is negative only within a certain range of values of r. According to 

the results of [4 ], q(r) is negative at large distances from the explosion center and decreases monotonically with 

increase in r. The agreement of the dependences q(r) calculated in these works near the explosion center and the 

disagreement far from it can be connected with the specific features of the numerical methods applied in these 
works. Thus, in [I, 3 ] the method of a set front was used with the equation of state of an ideal gas with y ffi 1.4. 

However, whereas in [ 1 ] this method was realized on a Lagrange grid for gas-dynamic equations in a form close 

to the characteristic one, in [3 ] the equations of gas dynamics were approximated by an explicit two-step predictor- 

corrector scheme on an inhomogeneous Elder grid. In [4 ], the method of straight-through calculation with an 

artificial viscosity was used, the gas-dynamic equations were approximated by the Richtmyer scheme [5 ] on a 

Lagrange grid, and the calculations were carried out for ~, -- 1.25. 

In order to elucidate the reasons for the above discrepancies we have undertaken the present work, which 

is devoted to a comparison of results of numerical and experimental investigations of the momentum of recoil on a 

flat target in a localized contact explosion with counterpressure. We have investigated numerically the effect of 

variations in the equation of state on the parameters of the shock wave front (SWF), rate of transport of the 

explosion energy to the environment, and the recoil momentum acting on a surface located in the symmetry plane 

of the problem. Here, we paid special attention to the values of quantities characterizing the explosion in the late 
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Fig. 1. Time dependences of the distance traveled by a shock-wave front (a) 

and the explosion source radius (b): 1) 7 = 5/3, 2) 1.4, 3) 1.2, 4) air. 

Fig. 2. Dependences of the amplitudes of the mass velocity (a) and the 
pressure excess (b) at the shock wave front on the distance of the front from 

the explosion center. The numbering of curves 1-4 is the same as in Fig. 1. 
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stages of its development - up to the instant when the pressure excess at the SWF becomes smaller than 0.2% of 

the counterpressure. We have also carried out experimental investigations of the recoil momentum acting on a flat 

target in laser break-down of air near a surface. 

The problem of a spherical explosion was formulated in the form of a Cauchy problem for the gas-dynamic 

equations in a one-dimensional formulation with the following initial and boundary conditions. At the instant t = 

0 the mass velocity is U -- 0 everywhere, the density equals P0 everywhere, and the pressure is P = P0 outside the 

energy source and Pl within the limits of the source. At the center, U - 0. Ahead of the SWF, U = 0, and the 

pressure and density equal P0 and P0, respectively. 
The problem was considered in Lagrangian physical coordinates, which makes it possible to follow not only 

the SWF motion but also the development of the energy-liberation boundary. The numerical method of straight- 

through calculation with an artificial viscosity [5 ] was used to solve the problem, which is based on a completely 

conservative difference scheme that approximates the gas-dynamic equations up to second order of accuracy in r 

and t. Schemes of this type allow algebraic transformations that relate the divergent difference equation for the 

energy to a nondivergent one, and thus reproduce the main property of the original system of differential equations 

- the mutual agreement of the laws of mass, momentum, and energy conservation [6]. This is an important 

advantage of theirs that provides high quality of the numerical modeling. The numerical method used is 

implemented in the form of a software package [7 ] that makes it possible to carry out investigations of transient 

explosion-induced motion of various media. 
The thermodynamics of the medium is described by the equation of state of an ideal gas. The adiabatic 

exponent was assumed to take values of 5/3, 1.4, and 1.2. In addition, an actual equation of state for air in tabulated 

form [8 ] was used. A uniform spatial grid was used in the calculations. At the initial instant t = 0 the parameters 

were assumed to take the following values: PI = 4.777- 109 Pa, Po = 1.665- l0 s Pa for variant 1 (7 = 5/3),  PI = 
2.8595.109 Pa, P0 = 10s Pa for variant 2 (7 = 1.4), Pl -- 1.4348- 109 Pa, P0 = 10s Pa for variant 3 (7 = 1.2), and 

Pl = 2.6515- 109 Pa, P0 = 10s Pa for variant 4 (air). The initial radius of the source is 10 -3 m, the energy contained 

in the source is E = 30.05 J, and the initial density is P0 = 1.25 kg/m 3 everywhere. 
Calculated dependences of the SWF radius and the explosion-source radius on the time and of the 

amplitudes of the mass velocity and the pressure on the distance traveled by the wave are presented in Figs. 1 and 

2. Here and in what follows, distance, time, velocity, and pressure are expressed in relative units of 2 = 
(E/Po) re3, r = E~PotaPo 5/6, CO = (Po/Po) ~ ,  and Po, respectively. It is evident from Figs. 1 and 2 that  

corresponding dependences have a similar behavior for different variants. Curves corresponding to different fixed 
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Fig. 3. Mass-velocity and pressure profiles. 

y do not cross anywhere. The only exception is the fourth variant, for which the dependences lie between the curves 

with y - 1.2 and y - 1.4. Thus, Fig. 1 shows that the trajectory of the SWF in air (curve 4) coincides with the 

corresponding trajectory in an ideal gas at 7 = 1.2 in the early stages and with the corresponding trajectory at 7 = 

1.4 in the later stages. This occurs as a result of a change in the value of 7 due to ionization and dissociation 

processes that take place in air at high pressures and temperatures. Figures 1 and 2 show an upward shift of the 

SWF trajectories and the time dependences of amplitude parameters that is proportional to 7. The opposite depend- 

ence on 7 is observed for the position of the trajectories of the explosion-source boundary. In addition, the source 

is characterized by a nonmonotonic variation of the radius that has an extremum at t = 0.178 whose value is 

inversely proportional to 7. Then the radius decreases somewhat, and after t = 1 it finally stabilizes. The trajectory 

of the explosion-source boundary is determined by the dynamics of the energy transport from the source to the 

environment. The energy in the source reaches a minimum when its radius is maximum, then increases somewhat, 

which occurs as a result of motion toward the center, and finally becomes constant when the radius stabilizes. The 

value of this constant depends strongly on 7. The residual energy expressed in fractions of the initial energy E 

equals 20% for 7 = 1.2, 18.4% for the variant with the tabulated equation of state, only 5.2% for Y -- 1.4, and just 

1.5% for 7 = 5/3.  This is explained by the direct dependence of the intensity of the processes of energy transport 

from the explosion source to the environment on 7. The higher the value of 7, the faster the source loses energy, 

the smaller its final size and the residual energy content, and the higher the values of the amplitude parameters 

of the shock wave. 

Figures 1 and 2 indicate that the time dependences of the amplitude parameters of an explosion induced 

by an extended source differ from those for a point explosion [9 ]. This is best seeri in Fig. 1, from which it is 

evident that prior to t = 0.1 the growth of the SWF radius and the source radius obeys a power law of the form r 

- bt a, a < 1. It should be noted that b and a differ for the source and the SWF and depend on 7. Only at t > 1, 

when the source size stabili~,es, does the growth of the SWF radius become linear, as in the case of a point explosion 

[91. 
Despite the difference in calculation methods and equations of state used in the works on a point explosion 

with counterpressure [1, 2], in [4 ] and in the present work qualitatively similar pictures of the development of 

transient motions are revealed. Here, we deal with the three characteristic regions of the explosion-induced flow 

that are presented in Fig. 3 as applied to the present work. Here, the solid curv.e depicts a profile of the mass 

velocity, and the dashed curve depicts a pressure profile (variant 4, the instant of time t = 2.14). The  first of these 

regions - the compression region - is formed shortly after separation of the shock wave from the boundary of the 

high-temperature sphere and comprises the shock-wave peak itself. It is followed by a rarefaction zone within which 

the mass velocity is directed toward the center and the density and the pressure have lower values than in the 

unperturbed medium. This zone is formed some time after the explosion, and at the beginning of its development 

it includes the energy-liberation region. Then the third region is formed in the center - a quiescence region [3 ] 

that expands with the SWF motion, in which the velocity is close to zero. Our calculations show that a volume 

explosion produces a more complicated structure of this zone. The density and the specific internal energy are 
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TABLE 1. Dependences of the Specific Momenta on the Radius (q+- 10 -2) 

Air y = 5/3 y = 1.4 y = 1.2 
r-10 

q+ q-  q+ q- q+ q- q+ q-  

0.89949 

1.39529 

2.37992 

2.7284 

3.6242 

4.71725 

6.05098 

7.67838 

9.66411 

12.0871 

15.0436 

18.651 

35.4676 

22.3803 

10.7264 

8.99494 

6.88038 

5.71856 

4.69529 

3.85587 

3.19532 

2.54924 

2.07137 

1.67836 

-9.64783 

-9.64792 

-9.63516 

-9.57583 

-8.69415 

-7.06863 

-5.63748 

-4.50987 

-3.64472 

-2.93222 

-2.26572 

-1.88876 

51.2362 

33.5666 

17.6619 

15.0164 

10.9207 

8.8121 

7.17551 

6.00161 

4.88907 

4.02276 

3.26572 

2.65726 

-12.6496 

-12.6514 

-12.6039 

-I2.5274 

-11.9376 

-10.4318 

-8.52722 

-6.86549 

-5.55982 

-4.54922 

-3.67625 

-2.93241 

45.9035 

28.8281 

13.9303 

11.4842 

8.37187 

6.82476 

5.78857 

4.74343 

3.93179 

3.16623 

2.57349 

2.09081 

-10.7834 

-10.7828 

-10.7814 

-10.7494 

-10.2466 

-8.66776 

-6.95778 

-5.52021 

-4.43897 

-3.57012 

-2.89115 

-2.36536 

35.6672 

20.8882 

8.86484 

7.26799 

5.76978 

5.01631 

4.06252 

3.34118 

2.73265 

2.20931 

1.79042 

1.45529 

-8.80555 

-8.80551 

-8.8069 

-8.7821 

-7.88342 

-6.27639 

-4.98514 

-3.96804 

-3.14161 

-2.52594 

-2.04279 

-1.68235 

distributed nonuniformly within the zone. Outside the explosion source, the values of these parameters are close 

to their values in the unperturbed medium. Within the explosion source, the specific internal energy is substantially 

higher, but the density is equally lower, while the pressure in the quiescence zone is constant everywhere and 

equals P0. Therefore, with development of the third region, the explosion source already does not affect the motion, 

despite the substantial energy content. Here, its boundary stabilizes (see Fig. I), and the transient motion, as has 

been shown earlier, assumes the regime inherent in a point explosion. 

The development of these regions of motion is responsible for the propelling action of the explosion, i.e., 

determines such parameters as the specific momentum of the excess pressure q, the total momentum J acting on a 

finite area, the total momentum G acting on the area involved in the motion, and the limiting momentum I acting 

on an area of given radius r (areas lying in the symmetry plane are assumed). The quantities J, G, and I are 

determined from the relationships [10 ] 

r t 

J (0 = f f (p - Po) attar, 
o o  

G (t) = 2~ f f (e - PO) rdrdt, (2) 
00  

r ~ r 

I(r)  = 2~ f f (P - PO) dtrdr = 2~ f (q+ + q_) rdr. 
O0 0 

We obtained dependences of the total momenta J and G on the time and dependences of the specific momenta of 

the excess pressure q+ and q_ and the limiting momentum on the area radius. Table l presents calculated depend- 
ences q+ (r) and q_ (r). Figure 4 presents dependences G(t), and Fig. 5 presents dependences of the momentum 

J(t) acting on concentric areas of radii 0.5~, ~, and 2A (branches a, b, and c, respectively). Figure 6 presents 

dependences of the limiting momentum I(r). In all cases, the momentum is expressed in units of E / C  o, and q is 
expressed in units of Etr~p~2P~ 6. A strong direct dependence of the quantities q, J, G, and I on 7, all other factors 

being the same, is evident from the figures and the table. In addition, beginning with a certain value of r that 

depends on y, the absolute value of the parameter q_ becomes larger than q+ (see Table 1). Thus, the development 

of the rarefaction region proves to be predominant, which agrees with results presented in [4 ]. This agreement 
means that the repeated jumps (unavoidable in the case of an extended source) that were taken into account in the 
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Fig. 4. Time dependence  of the total recoil momentum acting on the ent ire  

plane. The  numbering of curves 1-4 is the same as in Fig. 1. 

Fig. 5. Time dependence  of the recoil momentum acting on areas of different  

radii. The  numbering of curves I-4 is the same as in Fig. 4. Branches a, b, 

and c of the curves correspond to radii of 0.52, 2, and  22. 

present work do not change qualitatively the pictures of the development of motion. It is evident from Fig. 4 that  

the total momentum G reaches a maximum at t ---- 1, then decreases,  and  at t ~ 3.5 changes sign (here  the size of 

the area involved in the motion lies within the limits of 1.4/l to 1.9~, depending on the value of y). It is evident that  

variations in the equation of state provide a change in the maximum value of G in proportion to y without changing 

its position with respect to t. 

Figure 5 presents a comparison of results obtained for variants 1-4. For  all the variants,  the branches of 

the momentum J are  nonmonotonic in time. Each area size r has it own maximum and upward and  downward 

branches. Variations in the equation of state induce substantial changes in the ext rema of J but virtually do not 

affect their  position. Here  the values of the extrema are directly related to 7. It is evident from the figure that  the 

momentum J is negative at r -- 22 irrespective of the variations in the equation of state, and  Rc - the critical area 

size at which it changes sign - equals 2 for air. The  same figure makes it possible to trace the es tabl ishment  of 

the limiting momentum L It is established simultaneously for areas of the same size as a result  of freezing of the 

total momentum J ,  and its value depends on y. Since this freezing occurs as a result  of expansion of the quiescence 

zone, the trajectory of its boundary  depends only weakly on the thermodynamical  properties of the medium. Figure 

6 shows a strong direct dependence of the maximum of I on 7 and also values of the radius at which the limiting 

momentum I changes its sign. The  figure also illustrates a weak dependence of the position of the ex t remum of I 

on 7. 

Each of the functions G(t), l (r) ,  and q(r) has a single maximum, upon reaching of which they monotonically 
decrease without limit, which indicates predominance of the rarefaction zone (see Fig. 3) in the late stage of the 
explosion. A similar predominance of the rarefaction zone has also been revealed in [ I ,  2, 4, 10] (the results of 
[3 ] do not allow for a concrete conclusion). Thus, virtually all known calculations of a spherical explosion with 
counterpressure carried out by various numerical methods using various equations of state yield, irrespective of the 
method of representation of the energy source (point or extended, instantaneous or time-dependent), one and the 
same qualitative result - predominance of the rarefaction region of the explosion-induced flow at long scat ter  times. 

This theoretical result has an experimental  substantation. In [ 1 1, 12 ], dependences  of the recoil momentum 

of the laser- induced breakdown of air  on the target dimensions were presented:  for  a flat target  a n d  a hemisphere  

(breakdown at the  center of curvature).  A nonmonotonic behavior of this quantity has been revealed - growth with 

the target size is followed by at ta inment  of a maximum and a decrease. The  information presented above means 

that the predominance of the rarefaction region in an explosion-induced flow is a consequence of the laws of mass, 

momentum, and energy conservation. This  is one of the main features of spherical shock wave motion under  

conditions of counterpressure.  A second interesting feature is the absence of a phase shift between the pressure 

and velocity profiles (Fig. 3). 
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Since the results in [11, 12 ] were obtained for small targets for which the recoil momentum is still positive, 

we carried out similar experiments with very large targets. Inasmuch as fabrication of light and durable targets 

with a radius exceeding 0.1 m presents difficulties, we had to give up the idea of carrying out experiments with an 

explosion energy similar to that used in the calculations E = 30.05 J, and the experiments were carried out at the 

energy E = 0.1 J. Since the solution to the problem of an explosion with counterpressure is not self-similar [ 13 ], 

the above numerical results cannot be compared with results of experiments obtained for a substantially differing 

energy. Therefore, we additionally carried out calculations for the problem of an explosion in the same formulation 

with initial parameters corresponding to the experiment (see below). The initial source radius was 0.1.10 -3 m, the 

source energy was E - 0.2 J (due to the spherical symmetry of the problem). The unit of length in this case is ,l = 

10 -2 m. The equation of state of an ideal gas with ), ffi 1.4 was used. The calculations yielded results qualitatively 

similar to those presented above and therefore they will not be described here. We should only mention that the 

equality Rc ffi ,1 also holds in this case. 

Near-surface optical breakdown of air induced by laser radiation acting on the surface of a metal target at 

the atmospheric pressure was used as the local explosion. A laser setup [14 ] based on a pulsed-periodic Nd 3+ YAG 

laser operating in the Q-switching mode was used in the experiments. The bell-shaped laser pulse (a wavelength 

of 1.064 pro) had a duration of 2.10 -8 sec and an energy of 0.1 J. The laser radiation was focused on the target 

surface by a planoconvex spherical lens with a focal length of 60 mm. The diameter of the homogeneous radiation 

spot was 200/zm. The laser-radiation fluence was varied in the experiments by mean§ of glass light filters within 

the range of 0 .1-12 GW/cm 2. 

The dynamics of near-surface optical breakdown and the properties of near-surface plasma plumes 

appearing under the given conditions of laser action have been described in detail elsewhere [151. At a laser- 

radiation fluence w > 0.3 GW/cm 2, transfer of a plasma front into air takes place, and its propagation occurs in 

the mode of light-induced detonation. When the laser-radiation fluence is increased to 1 GW/cm 2, radiation 

processes of the plasma-front transfer begin to play an important part in forming near-surface plasma plumes, and 

they become dominating at w > 4 GW/cm 2 irrespective of the target material. Under these conditions near-surface 

plasma plumes are spindle-shaped. However, even at w = 12 GW/cm 2 their dimensions do not exceed 2 ram. By 

the end of the laser pulse and upon separation of the shock wave from the plasma front, the two-dimensional 

character of the gas-dynamic scattering becomes progressively less pronounced, and at distances that exceed the 

size of the near-surface plasma plume by an order of magnitude, the shock wave can be considered to a good 

approximation as having a hemispherical shape. 

Subsequently, the region occupied by the near-surface plasma plume transforms into a low-density high- 

temperature sphere floating up along the vertically oriented target surface (see below) under the action of the 

Archimedes force and the viscosity. Inasmuch as the axial symmetry of the motion is broken in this case, the 

development of the perturbation already cannot be modeled by a one-dimensional calculation. However, estimates 
show that in the time necessary for the shock wave to travel a distance of 122 the sphere shifts by just 0.5- 10-a`1, 

and therefore its motion in these experiments can be neglected. At the initial instant, the region of the near-surface 

plasma plume appears to be filled with an ionized gas and metal vapor, and- the  energy is distributed 
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inhomogeneously over the region. This differs from the initial conditions in the source used in our calculations. 

They equations of state used in this work did not take metal vapor into account. However, as has been noted above, 

the alternating-sign character of the recoil momentum is not determined by the thermodynamics of the medium. 

In the calculations, we did not take into account the component of the recoil momentum due to evaporation of the 

target material. However, it is evident that taking this component into account will result in a shift of the curves 

G(t), l ( t ) ,  and l(r) (Figs. 4-6) upward, and their zeros will shift to higher values. In other words, additional 

components of the recoil momentum will just provide an increase in R c. Estimates based on the initial parameters 

of a calculation for an aluminum target show that Rc ~ 1.6,l = 1.6- 10 -2 m when evaporation is taken into account. 

Finding a critical target size for which the recoil momentum changes sign was one of the objectives of the 

experimental investigation. To do this, two series of experiments with different targets were carried out. In the first 

series, a disk of aleminum foil with a radius of 1.5-10 -2 m was used as the target. This disk was attached to a 

lever mounted on a vertical needle using a ruby bearing so as to provide its free rotation about a vertical axis. The 

lever was balanced by an identical disk attached to its opposite end. At the initial instant, the target plane was 

oriented normal to a horizontally propagating laser beam aimed at its center. According to results of calculations, 

positive recoil momentum directed along the beam was expected for target radii r < Re, and positive recoil 

momentum in the opposite direction was expected for r > Re. The direction of the lever motion should change 

accordingly. Experiments with this target showed that the recoil momentum is positive. 

The second series of experiments was carried out with a target of radius r = 5- 10 -2 m. It was made of 

dense paper and was suspended by means of two vertically spaced paper supports on a vertically stretched thread, 

and it rotated freely about the thread. The rotation radius was 6" 10 -2 m. An aluminum foil disk was attached to 

the center of the target in the region of formation of the near-surface plasma plume. In this case, a positive sign 

of the recoil momentum was also found. Thus, the propellant effect does not change its sign. Upon further increase 

in the target radius r, the velocity of its motion decreases as r -2 as a result of the increase in mass. 

Effects connected with streamlining of the target edges reduce the recoil momentum but cannot provide a 

constant sign of the momentum. In addition, the gas flows to the region behind the target from the region with 

increased pressure, which is followed by a rarefaction zone. A counterflow proceeds into the latter. This motion 

cannot extend itself outside the rarefaction zone, since the pressure in the quiescence zone equals that in the 

unperturbed medium. Most likely, these counterflows, having opposite effects on the target motion, cancel each 

other out, since the use of a special panel hampering the gas flow to the region behind the target had no effect on 

the results obtained. 
The experiments have revealed the strictly positive sign of the recoil momentum independently of the target 

size. This means that a qualitative disagreement between the results of numerical calculations of the explosion with 

counterpressure and the experiment occurs for scattering times t > 1. This can be explained by some physical 

process not taken into account that is involved at small values of the parameters of the SWF and reduces the 

steepness of the pressure profile in the compression zone and substantially enhances it in the rarefaction zone and 

thus provides a balance of the contributions of these regions to the recoil momentum. In our calculations, we did 

not take into account dissipation processes due to the viscosity and the thermal conductivity or relaxation processes, 

which provide the existence of a second viscosity in polyatomic gases [16 ]. However, both the viscosity and the 

thermal conductivity provide a decrease in the steepness of the pressure profile in all regions of motion [17 ]. In 

addition, estimates made for the case of a spherical explosion in a heat-conducting viscous gas [18 ] show that the 

ratio of dissipative terms to inertial terms in the Navier-Stokes equations decreases with increase the arrival time 

of the shock wave as t -1 for the region far from the explosion center and as t -I+3/(~+2) for the region close to the 

explosion center. Therefore, dissipation processes exert a substantial direct effect on the development of transient 

motions only in the vicinity of the explosion center for short scattering times. It is thus evident that these processes 

cannot explain the disagreement between the experiment and the results of the calculations. 
Relaxation processes provide the frequency dependence of the phase velocity of sound (dispersion) provided 

that the frequency of sound v > 1/tr, where tr is the relaxation time. In a medium with dispersion, the evolution of 
any perturbation with a finite amplitude is determined by the relative contributions of effects of the nonlinear 

interaction of its Fourier components and dispersion effects. The latter lead to transformation of the perturbation 
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into a broadening wave packet. Nonlinear effects characterized by the Mach number M provide transport of the 

perturbation energy to higher frequencies and thus provide its stability. The interrelationship of the above effects 

is characterized by the parameter [191 

2 ( c  2 - c 2) 
D = (3) 

~McX 0' + 1) ' 

where C and CD are the velocities of sound in media without and with dispersion, respectively. 

Dispersion is always neglected in the physics of explosion. This occurs because no dispersion is observed 

in all homogeneous media with low absorption of sound [201. In gases, dispersion is observed within the narrow 

frequency range of 10-100 kHz [21 l, in which absorption is high. On the other hand, in the near and middle 

explosion zones, having primary importance in explosion experiments and technologies, the amplitude values of 

the Mach number M are high, so that D << 1. In these regions, the evolution of the shock-wave peak is determined 

by dissipation processes, which, along with relaxation processes, provide growth of its width and an additional 

decrease in its amplitude with increase in the distance from the explosion center. 

In the far explosion zone, which in the case under consideration corresponds to a scattering time t > 1, a 

different picture is observed. Neglecting dispersion effects is already unjustified. However, here only qualitative 

estimates can be made, since no theory of the acoustical dispersion has been developed. It should be noted that 

the effect of dissipation processes becomes small as a result of a substantial decrease in the amplitude parameters 

of the perturbation front [18]. The amplitude Mach number acquires the value M D at which D = 1, i.e., the 

contributions of dispersion and nonlinear effects cancel each other out. Here, dispersion is already a decisive factor 

affecting the evolution of the perturbation peak, whose effect results in rapid growth of the peak width with 

decreasing M. The dispersion-induced broadening of the rarefaction zone is substantially smaller, since, due to the 

fact that it has a substantially larger width, the contribution of high-frequency Fourier components, which undergo 

dispersion, is relatively small here. As a result, the contributions of the compression and rarefaction regions to the 

recoil momentum cancel each other out. Finally, when D > 1, the interaction of Fourier components of the 

perturbation becomes so negligible that the superposition principle appears to be applicable to them. Since the 

velocities of these components are different, the perturbation transforms into a broadening sound-wave packet. Its 

high-frequency components are rapidly absorbed, whereas low-frequency components propagate to great distances 

from the location of the explosion, i.e., dispersion leads to transformation of the shock-wave motion into an acoustic 

perturbation. Here the amplitude value of the Mach number Mo restricts the stability region of the shock wave 

from below. 
It has been shown in [22 ] that in the case of an acoustic perturbation the time-averaged deviation of the 

pressure from its equilibrium value equals zero in all space. In the same work, the following relationship for this 

quantity has been derived: 

(P - PO) rdr = O, 
0 

from which is evident that an acoustic perturbation does not contribute to the recoil momentum. Therefore, after 

the above transformation the recoil momentum has a constant residual value whose magnitude and sign depend on 

the number MD. Our experiments show that this value is positive for air at NTP. 
In the case of spherical symmetry, an acoustic wave differs from a shock wave by a phase shift between 

the pressure and velocity profiles [23 ] that decreases with increase in the distance from the origin. Relaxation 

processes can provide this shift, since they lead to a delay in establishment of equilibrium with respect to the 

pressure change and, therefore, to a phase shift between the pressure and the internal energy [24 ]. 

With the development of the dispersion-induced instability, the perturbation region can be represented as 

a pulsed isotropic acoustic source with the maximum of the spectral radiation density corresponding to the frequency 

v ~ R D / C  , where R o is the radius of the perturbation region at M = M D. Vibrations with this frequency propagate 
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to great distances from the location of the explosion. By using the graphical data presented above, one can represent 

the period of these vibrations within the approximation of the instantaneous transformation of the shock wave into 

an acoustic perturbation as follows: 

T = rff -Ca+l)/2 MD a- 

Relationship (4) has been derived with regard for the fact 

the front radius (Fig. 2a) is well approximated by a power 

E l ~ 3  1 /2n-5 /6  
P0 r0  - ( 4 )  

that the dependence of the mass-velocity amplitude on 

law within the range of 1 < r < 10. r /= 0.8934 and cr = 

0.564 for y "=5/3, T/= 0.783 and (7 .- 0.552 for y = 1.4, ~/-~ 0.6513 and cr ~ 0.531 for y = 1.2, and T/= 0.712 and 

a = 0.536 for real air. If one assumes that air corresponds to an ideal gas with y -- 1.25 in the late scattering stage, 

and the transformation likes place instantaneously at the instant of time corresponding to the inflection point in 

Fig. 5 (branch c for air), one obtains T -~ 5.963" 10 -4 sec from (4). The value M - 6.86-10 -2, which is assumed 

to be close to the threshold value MD, corresponds to this point. 

The following empirical relationship for evaluating the period of infrasound vibrations induced by a near- 

surface nuclear explosion in the atmosphere is presented in [25 ]: 

T = 4-10 -4 (E/4.2) l/a (5) 

(here and in (4) T is expressed in seconds). For the energy E = 30.05 J, Eq. (5) yields the value T -- 

6.118- 10 -4 sec. The closeness of these two values of T serves as an indirect substantiation of the above concepts. 

However, the small difference (2.5%) may well be due to accidental mutual compensation of errors in gas-dynamic 

calculations of the shock wave at the stability threshold on the one hand and errors in extrapolating estimates valid 

for a high-energy explosion to a low-energy explosion due to the non-self-similar character of the problem on the 

other hand. 

Since in this case the acoustic signal has no other energy sources except for internal motions within a region 

of radius RD, its duration can be estimated as AT - R D / C .  Then, by using the uncertainty principle [26 ] according 

to which the width of the spectrum of a signal AH and its duration obey the relationship AHAT = const, we obtain 

the following estimate for the spectrum width far from the explosion giving rise to the signal: A H - E - t / 3  x 

x pot'2P~0 . Thus, the spectral characteristics of acoustic radiation due to a shock wave are unambignously related 

to the explosion energy, the equilibrium values of pressure and density, and the thermodynamic and dispersion 

properties of the medium. 

It follows from Eq. (3) that with a change in the contribution of dispersion effects, one observes changes 

in the threshold blach number biD, which most likely is an individual characteristic of each acoustic medium, since 

all media differ by relaxation processes giving rise to dispersion. Thus, in monatomic gases at NTP,  one observes 

translational dispersion [21 ] due to relaxation of the deviation of the velocity distribution function from the Maxwell 

distribution and due to fluctuations. In polyatomic gases under the same conditions one also observes rotational 

dispersion due to processes of energy redistribution between internal rotational degrees of freedom. This makes it 

possible to suppose that MD is smaller in monatomic gases than in polyatomic ones. In the case of inert gases an 

increase in MD with the molecular weight of the gas should be expected, since the average time of existence of 

fluctuations is proportional to the molecular weight. If this is so, then helium is characterized by the minimum bid 

and the minimal frequency of the main component of the explosion-induced acoustic signal, all other conditions 

being the same. Most likely, the sign-varying character of the recoil momentum, whose absence in air has been 

established in the present work, is possible in inert-gas atmospheres.  This  problem thus requires fur ther  

experimental and theoretical investigations. 

C O N C L U S I O N S  

1. Results of numerical gas-dynamic simulations of transient explosion-induced symmetrical gas motions 

agree qualitatively with experiments within the (bounded from below) region of amplitude Mach numbers M > MD, 
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when nonlinear effects dominate over dispersion. Outside this region, the gas-dynamic description of transient 
motions becomes inapplicable, since it leads to negative values of the calculated recoil momentum for certain target 

sizes, whereas the experimentally measured recoil momentum is positive irrespective of the target size. 
2. The qualitative disagreement of theoretical and experimental results stems from the fact that dispersion 

of sound, which limits the region of existence of a shock wave and leads to transformation of shock-wave motion 

into an acoustic perturbation, is not taken into account in the calculations. It should be noted that in actual media, 
the stability region of a shock wave is determined by the condition M > MD. However, in an ideal medium with 

dissipation but without dispersion (i.e., MD = 0) transient explosion-induced motion takes place only in the form 

of a shock wave. In this case the gas-dynamic description of an explosion leads to correct results without restrictions. 
3. The parameters of the acoustic signal induced by an explosion in a gas are related to the explosion 

energy, the counterpressure, the equilibrium gas density, and its thermodynamic and dispersion properties. This 

makes it possible to consider an explosion in a gas not only as a pulsed acoustic source with a spectrum that is 
tunable over a wide range but also as a means of investigation of acoustic dispersion. 

The authors thank L. Ya. Min'ko for support of the work. 

N O T A T I O N  

q, specific momentum of excess  pressure;  r, dimensionless  distance; y, ad iabat ic  exponent ;  U, 

dimensionless mass velocity; E, explosion energy; P0, initial density of the medium; ~, unit distance; r, unit time; 

CO, unit velocity; b and a,  constants of the power law of motion of the shock wave and the boundary of the explosion 
source; J,  total recoil momentum acting on a bounded area; G, total recoil momentum acting on the entire plane; 
I, limiting recoil momentum; Re, critical target size at which the recoil momentum changes sign; w, laser-radiation 

fluence; AP, pressure jump on the shock-wave front; M, amplitude Mach number; D, parameter characterizing the 
ratio of nonlinear and dispersion effects; T, period of acoustic vibrations propagating to large distances from the 
explosion location; T/, coefficient in the equation defining T; or, exponent of the power law of the dependence of T 

on the threshold value of the Mach number MD that determines the stability regionof the shock wave; A/, duration 

of acoustic radiation; AH, width of the acoustic-radiation spectrum. 
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